ArrayBoardR6 Software API
Reference Manual

ArrayBoardR6_Lib.dll Version 1.55

A/DIC Inc.

740 Florida Central Pkwy
Suite 1024
Longwood, FL 32750
(407) 834-9981

INTRODUCTION

The ArrayBoardR6_Lib.DLL is a library of functions to communicate with the ArrayBoardR6
hardware which runs the 256 pixel PbS/PbSe linear detector arrays. This programming API is
written in the Microsoft .NET Framework and the API functions can be interfaced to and called
directly from top level client programs written in Microsoft Visual C# and Microsoft Visual
BASIC. Functions in the DLL when coding the top level client application appear as any other
built in function within the .NET Framework after being properly declared.

Additionally, the DLL functions can be called from Microsoft Visual C++ using the COM
interoperability functionality which is much less straightforward than calling the DLL functions
from Visual C# or Visual BASIC. This is because the .NET Framework is “Managed” code
which runs on top the Microsoft Common Language Runtime (CLR), whereas Visual C++ is
“Native” code and more processor specific. Managed and Native code binaries are not directly
interchangeable and must communicate through an interface such as COM. The
ArrayBoardR6_Lib.DLL has been compiled with the “Make assembly COM-Visible” option
turned on so that the DLL functions are visible through COM interoperability.

Managed code DLLs that run on top of the Microsoft CLR can also be called from top level
LabView programs according to the LabView specifications, but this has not been tried and is
beyond the scope of this document. Refer to the documentation that is included with the
LabView development platform.

The ArrayBoardR6_Lib.DLL has been tested with both Visual C# and Visual BASIC top level
clients and verified to be fully functional being called from these languages.

Modifications to the underlying DLL code have been made in order to be properly callable from
C# and C++ starting with version 1.30. Only version 1.30 and later of the DLL should be used
for calling from C# and C++.

To verify the version of the DLL you are using for top level application development, right
mouse click on ArrayBoardR6_Lib.dll in Windows Explorer, chose “Properties” in the dialog
box that pops up, and then choose the “Details” tab.

CALLING THE DLL FUNCTIONS FROM VISUAL C#

To call the ArrayBoardR6_Lib.dll functions from Visual C# you must first add a reference to the
DLL in your project and then declare the namespace using the following steps:

1. Right mouse click on the top level application project in the Solution Explorer in Visual
Studio and choose “Add Reference”. Next choose the “Browse...” button in the lower
right of the dialog box that pops up and point to the ArrayBoardR6_Lib.DLL file and add
the DLL as a reference to your application project

2. At the top of the C# code file that will be calling the DLL, add the line:

using ArrayBoardR6_L.ib;

3. Within the class module of the code file that will be calling the DLL functions add the
following line, where “BoardComs” is any name the software developer wants to define:

ArrayBoardR6 BoardComs = new ArrayBoardR6();

4. Functions are then called with the following syntax:
result = BoardComs.DLLfunction(paraml, param2, ...);
where result is an int data type

Since communications are opened with the Connect_Boards function (see function reference)
and all further function calls rely on open communications, all DLL functions that communicate
with the array board hardware should be called from the same code class module using the
“BoardComs” function prefix name from where it was declared. Opening the same board using
the Connect_Boards function from different modules at the same time will cause the DLL to
loose data synchronization with the hardware and data communication errors will occur. To call
the DLL functions from different code modules in a top level application, create your own
function call “wrappers” within the board communication C# module that can be called from
anywhere and then the wrapper function makes the actual local hardware function calls. For
example, a wrapper function to get pixel data from the array board:

public void GetPixelData(int boardnumber, ref int[] PixelData)
{

¥

result = BoardComs.GetData(boardnumber, ref PixelData);

Here the function BoardComs.GetData is called from the same class module where BoardComs
was declared, communications opened, and all DLL function calls are called from, but the
GetPixelData function can be called from any code module or class (once properly declared)
assuming that the board communications have already been opened with the Connect_Boards
function.

An alternate method of calling the array board functions across multiple code files is to use the
“partial” class modifier when declaring classes and define the same namespace and classes
across multiple code files. This method has not been tested by ADIC.

CALLING THE DLL FUNCTIONS FROM VISUAL BASIC

To call the ArrayBoardR6_Lib.dll functions from Visual BASIC you must first add a reference
to the DLL in your project and then declare the namespace using the following steps:

1. Right mouse click on the top level application project in the Solution Explorer in Visual
Studio and choose “Add Reference”. Next choose the “Browse...” button in the lower
right of the dialog box that pops up and point to the ArrayBoardR6_Lib.DLL file and add
the DLL as a reference to your application project

2. At the top of the BASIC code file that will be calling the DLL, add the line:

Imports ArrayBoardR6_L.ib

3. Within the class module of the code file that will be calling the DLL functions add the
following line, where “BoardComs” is any name the software developer wants to define:

Dim BoardComs as New ArrayBoardR6

4. Functions are then called with the following syntax:
result = BoardComs.DLLfunction(paraml, param?2, ...)
where result is an integer data type

Since communications are opened with the Connect_Boards function (see function reference)
and all further function calls rely on open communications, all DLL functions that communicate
with the array board hardware should be called from the same code class module using the
“BoardComs” function prefix name from where it was declared. Opening the same board using
the Connect_Boards function from different modules at the same time will cause the DLL to
loose data synchronization with the hardware and data communication errors will occur. To call
the DLL functions from different code modules in a top level application, create your own
function call “wrappers” within the board communication class module that can be called from
anywhere and then the wrapper function makes the actual local hardware function calls. For
example, a wrapper function to get pixel data from the array board:

public sub GetPixelData(byval boardnumber as integer, byref PixelData() as integer)
{

¥

result = BoardComs.GetData(boardnumber, PixelData)

Here the function BoardComs.GetData is called from the same class module where BoardComs
was declared, communications opened, and all DLL function calls are called from, but the
GetPixelData function can be called from any code module or class (once properly declared)
assuming that the board communications have already been opened with the Connect_Boards
function.

An alternate method of calling the array board functions across multiple code files is to declare
the interface public with the “Public” modifier within the class where the bulk of the array board
communication functions will reside (like the code that initially opens communications with the
Connect_Boards function):

Public BoardComs as New ArrayBoardR6

To then call the array board functions from another code module, you would then call the DLL
function with the following syntax:

ClassName.BoardComs.DLLfunction(param1, param?2, ...)

Where:

ClassName = name of the public class where BoardComs was declared

ADIC has not tried that method of calling the array board functions across multiple classes/code
modules.

CALLING THE DLL FUNCTIONS FROM VISUAL C++

Visual C++ is considered “native” code and is more processor specific than the code architecture
of the Microsoft CLR which is “managed” code. Native code and the managed code of the CLR
do not interact directly and must communicate through an interface such as COM.

The ArrayBoardR6 Lib.DLL has been compiled with the “Make assembly COM-Visible” option
turned on using the GUID number “ccf7ff41-474c-4597-9cfd-766248702000” and the functions
exposed through a public interface block following the example from Microsoft:

https://msdn.microsoft.com/en-us/library/2w30w8zx%28v=vs.110%29.aspx?cs-save-lang=1&cs-
lang=csharp#code-snippet-2

The interface block name for the array board functions exposed through COM is
“iArrayBoardR6”

Actual “how-to” implementing of calling COM exposed objects of managed CLR code in Visual
C++ code is beyond the scope of this document and left for the C++ developer to work out.

A type library file (TLB file) is needed for Visual C++ developers to call the DLL, then the C++
developer can either create a type library file using the Tlbexp.exe tool installed with the Visual
Studio Tools or use the one already created and included with the array board software
distribution.

https://msdn.microsoft.com/en-us/library/hfzzah2c%28v=vs.110%29.aspx

Here are a few other reference links if needed:

An Overview of Managed/Unmanaged Code Interoperability:

https://msdn.microsoft.com/en-us/library/ms973872.aspx

Assembly Registration Tool (COM objects need to be registered with the registry to be called):

https://msdn.microsoft.com/en-us/library/tzat5yw6%28v=vs.110%29.aspx

https://msdn.microsoft.com/en-us/library/2w30w8zx%28v=vs.110%29.aspx?cs-save-lang=1&cs-lang=csharp#code-snippet-2
https://msdn.microsoft.com/en-us/library/2w30w8zx%28v=vs.110%29.aspx?cs-save-lang=1&cs-lang=csharp#code-snippet-2
https://msdn.microsoft.com/en-us/library/hfzzah2c%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/ms973872.aspx
https://msdn.microsoft.com/en-us/library/tzat5yw6%28v=vs.110%29.aspx

Notes on calling the DLL functions:

1. The Connect_Boards function must be called prior to any of the other functions
being called. All functions assume communications have been previously
opened with the array board by the Connect_Boards function.

2. All functions are written to not return until the data has been sent/retrieved from
the array board in order to maintain data communication synchronization. The
top level client application should not advance and call new array board
communication functions until the current function has returned or else data
handshaking will get out of order and a data communication error will occur.
Often the error will clear itself and communications will re-sync back up, but it is
highly recommended to wait for a function to return before proceeding with the
next communication function call to the array board. Example code that will wait
for the function to return is:

fresult = 99; // 99 is an arbitrary number
fresult = BoardComs.DLLFunction(param1, paramz,);

while(fresult = 99)
{

/I do nothing but wait for function to return

/I 1 = success, 0 = fail

}

This type of coding is needed only if the top level client application doesn’t wait
for the function return in the original function call and advances to subsequent
code statements.

3. The “GetData_ExtTrigger” and “GetDataFrames_ExtTrigger” functions are
a special case of communication with the array board. Data retrieval from
the array board is not initiated with a software function call but by an external
timing input to the array board hardware. Each time a trigger is received by the
array board the array board will send a 256 pixel stream of data to the computer
via the USB. When in external trigger mode, the top level client application
should be running in a loop to continually receive pixel data from the array board
and should not send any other commands to the array board during external
trigger mode or data synchronization errors will occur. To call other array board
API functions, first disengage external trigger mode, send and receive the other
function call/data, then re-engage external trigger mode. The LMAC top level
client application supplied with the array board shows an example of this, when
external data mode is enabled all other array board control functions are un-
selectable.

Connect_Boards

Description:
Finds and opens communications to array boards on the USB bus. Up to 8 boards are

opened at once if connected to the USB

Calling formats:

VB .NET call:
{return value} = BoardComs.Connect_Boards()

Visual C# call:
{return value} = BoardComs.Connect_Boards();

Parameters:
{return value} = Number of array boards found and opened. Will return O if no boards
are found on the USB bus. Data type is Integer

Programming Notes:

This has to be the very first command to send to the array board as all other commands
rely on having communications already opened and referenced by board index
number.

Close Boards

Description:
Closes communication with all attached array controller boards.

Calling formats:

VB .NET call:
{return value} = BoardComs.Close_Boards()

Visual C# call:
{return value} = BoardComs.Close_Boards();

Parameters:

{return value} = Passed status variable from the function call. If the function completed
successfully will return with a value of 1, otherwise a 0 is returned indicating the
function failed. Data type is integer.

Programming Notes:

This should be the last function sent to the array board to cleanly close and detach
board communications from the USB bus. To reopen communications after they
have been closed, recall the Connect_Boards function.

GetData

Description:
Gets a single array scan of data from the system.

Calling formats:

VB .NET call:
{return value} = BoardComs.GetData(BoardNumber, DataArray)

Visual C# call:
{return value} = BoardComs.GetData(BoardNumber, ref DataArray)

Parameters:

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

DataArray = Data array of detector pixel values returned by the GetData procedure.
This is a single dimension array that contains 256 elements. Data type is integer.
To get the data in volts, the default conversion value is 16000, so divide the
DataArray values by 16000 and the result is in volts

Programming Notes:

GetDataFrames

Description:
Grabs a block of frames under software control.

Calling format:

VB .NET call:
{return value} = BoardComs.GetDataFrames(BoardNumber, Frames2Grab,
BigDataArray, GrabTime)

Visual C# call:
{return value} = BoardComs. GetDataFrames (BoardNumber, Frames2Grab, ref
BigDataArray, ref GrabTime);

Parameters:

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

Frames2Grab = Integer number of frames to grab. Valid range is 1 to 65535. Data type
is integer

BigDataArray = Two dimensional data array large enough to hold all requested frames
of data. Dimensionally the array is BigDataArray(frames, pixels), for example a
grab of 1000 full array frames, the minimum array size would be
BigDataArray(999,255). Data type is integer. To get the data in volts, the default
conversion value is 16000, so divide the BigDataArray values by 16000 and the
result is in volts.

GrabTime = The time GetDataFrames took to execute is returned in this variable as
elapsed seconds. Data type is double.

Programming Notes:

1) Depending on the integration time the array may be operating in either a readout
after integration or readout during integration. The board firmware decides which
mode to be in to maximize throughput. In general the array will readout during
integration for integration times greater than 650us.

GetData_ExtTrigger

Description:
Gets a single array scan of data from the system; when using external triggering to

control when integration begins.

Calling format:

VB .NET call:
{return value} = BoardComs.GetData_ExtTrigger(BoardNumber, DataArray,
TriggerPolarity)

Visual C# call:
{return value} = BoardComs.GetData_ExtTrigger(BoardNumber, ref DataArray, ref
TriggerPolarity);

Parameters:

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

DataArray = Integer data array of detector pixel values returned by the
GetData_ExtTrigger procedure. This is a single dimension array that contains a
minimum of 256 elements. Data type is integer. To get the data in volts, the default
conversion value is 16000, so divide the BigDataArray values by 16000 and the
result is in volts.

TriggerPolarity = Trigger polarity to use for the data set, 1 =rising, 0 = falling. Allowed
values are 0 and 1. Data type is integer. Useful when dual edge triggering is
enabled.

Programming Notes:

GetDataFrames_ExtTrigger

Description:
Grabs a block of frames from the array when using external triggering mode to control

when integration begins.

Calling format:

VB .NET call:
{return value} = BoardComs.GetDataFrames_ExtTrigger(BoardNumber, Frames2Grab,
BigDataArray, GrabTime, TriggerPolarityArray)

Visual C# call:
{return value} = BoardComs.GetDataFrames_ExtTrigger(BoardNumber, Frames2Grab,
ref BigDataArray, ref GrabTime, ref TriggerPolarityArray);

Parameters:

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

Frames2Grab = Integer number of frames to grab. Valid range is 1 to 65535. Data type
is integer

BigDataArray = Two dimensional data array large enough to hold all requested frames
of data. Dimensionally the array is BigDataArray(frames, pixels), for example a grab
of 1000 full array frames, the minimum array size would be BigDataArray(999,255).
Data type is integer. To get the data in volts, the default conversion value is 16000,
so divide the BigDataArray values by 16000 and the result is in volts.

GrabTime = The time GetDataFrames_ExtTrigger took to execute is returned in this
variable as elapsed seconds. Data type is double.

TriggerPolarityArray = A single dimension array that defines the trigger polarity for each
frame to be acquired. The trigger polarity to use for a data set is 1 =rising or 0 =
falling. Allowed values for each array index are 0 and 1. The minimum size of
TriggerPolarityData is a dimension of Frames2Grab. Data type is integer array.
Useful when dual edge triggering is enabled.

Programming Notes:

1) Depending on the integration time the array may be operating in either a readout
after integration or readout during integration. The board firmware decides which
mode to be in to maximize throughput. In general the array will readout during
integration for integration times greater than 650us.

ConfigureTrigger

Description:
Configures the operation of the external triggered acquisition mode.

Calling format:

VB .NET call:
{return value} = BoardComs.ConfigureTrigger (BoardNumber, TriggerPolarity,
TriggerEdgeMode)

Visual C# call:
{return value} = BoardComs.ConfigureTrigger (BoardNumber, TriggerPolarity,
TriggerEdgeMode);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

TriggerPolarity = A digital flag setting which edge to trigger on when in single edge
mode, and setting which edge to capture first in dual edge mode. 0 = falling edge, 1
= rising edge. Allowed values are 0 and 1. Data type is integer.

TriggerEdgeMode = A digital flag setting dual edge trigger mode. 0 = single edge, 1 =
dual edge. Allowed values are 0 and 1. Data type is integer

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

ConfigureTriggerDelay

Description:
Configures the operation of the triggered acquisition mode.

Calling format:

VB .NET call:
{return value} = BoardComs.ConfigureTriggerDelay (BoardNumber, TrigDelayValue,
TrigDelayMode)

Visual C# call:
{return value} = BoardComs.ConfigureTriggerDelay(BoardNumber, TrigDelayValue,
TrigDelayMode);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

TrigDelayValue = Sets the delay between the trigger event and the start of integration.
Allowed values are 0<= TrigDelayValue <= 65535. Data type is integer. Note:
Trigger delay only functions when enabled. For TrigDelayValue = 0 the delay is
1.02us. For 1<=TrigDelayValue<=65535 then delay in us is given by: 2.26us +
(TrigDelayValue - 1)*0.2us. From the equation give, the maximum delay is 13.11ms.

TrigDelayMode = A digital flag that enables or disables the external trigger delay mode.
0 = disabled, 1 = enabled. Allowed values are 0 and 1. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

SetExternalTriggerMode

Description:
Enables or disables the external trigger mode.

Calling format:

VB .NET call:
{return value} = BoardComs.SetExternalTriggerMode (BoardNumber,
ExternalTriggerState)

Visual C# call:
{return value} = BoardComs.SetExternalTriggerMode (BoardNumber,
ExternalTriggerState);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

ExternalTriggerState = A digital flag that enables or disables the external trigger
operaton. 0 = disabled, 1 = enabled. Allowed values are 0 and 1. Data type is
integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

1) Once the external trigger mode is enabled all data grabs from the array must be
done using either GetData_ExtTrigger, or GetDataFrames_ExtTrigger running in
a loop. Data sending from the array board is initiated by the external trigger and
not a software command. GetData_ ExtTrigger and GetDataFrames_ExtTrigger
only receive data. The external trigger mode must be disabled before any other
array board communications commands are sent to the board otherwise a data
synchronization error will occur. See note 3 in the section “Notes on calling the
DLL functions”.

2) The trigger delay and delay mode should be configured prior to enabling the
trigger mode.

SetintegrationTime

Description:
Sets the charge well integration time of the array. The integration time is represented by

a 16 bit number in the range 1 to 65535, where 65535 will give the maximum
integration time and 1 will give the minimum integration time.

Calling format:

VB .NET call:
{return value} = BoardComs.SetIntegrationTime(BoardNumber, IntegrationTime)

Visual C# call:
{return value} = BoardComs.SetIntegrationTime(BoardNumber, IntegrationTime);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

IntegrationTime = Digital word representing the value of the array integration time. The
valid range for IntegrationTime is 1 to 65535. A value of 1 will give an integration
time of approximately 4uS which is the minimum allowable integration time. Data
type is integer

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Algorithmn:
Integration time = 3.2us * (IntegrationTime - 1) + 4.025us

Programming Notes:

SetWellDepth

Description:
Sets the integration charge depth. This is a global setting for all pixels of the array.

Valid charge well sizes are 1pF, 4pF, 7pF, 10pF, 11pF, 14pf, 17pF, and 20pF. The
charge well sizes are set by an index number (see below).

Calling format:

VB .NET call:
{return value} = BoardComs.SetWellDepth(BoardNumber, WellDepth)

Visual C# call:
{return value} = BoardComs.SetWellDepth(BoardNumber, WellDepth);

Parameters:
BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.
WellDepth = index number used to set the integration charge well as follows:
0 = Set 1pF charge well
1 = Set 4pF charge well
2 = Set 7pF charge well
3 = Set 10pF charge well
4 = Set 11pF charge well
5 = Set 14pF charge well
6 = Set 17pF charge well
7 = Set 20pF charge well
Allowed values are 0 to 7. Data type is integer.
{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

SetPOTValue

Description:
Sets the bias voltage digital pots on the array board. One of four bias voltages may be

changed at a time.

Calling format:

VB .NET call:
{return value} = BoardComs.SetPOTValue(BoardNumber, POT2set, POTvalue)

Visual C# call:
{return value} = BoardComs.SetPOTValue(BoardNumber, POT2set, POTvalue);

Parameters:
BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.
POT2set = Selection index to choose which bias pot is to be set by the command. The
allowed values are 0 to 3. Data type is integer
POT2set = 0 => DAC VH bias voltage
POT2set =1 => DAC VL bias voltage
POT2set = 2 => GSKIM bias voltage
POT2set = 3 => DETBIAS bias voltage
POTvalue = Digital word to set the 10 bit digital pot for a bias generator. The valid range
is 0 to 1023. Data type is integer

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Algorithmn:
DAC VH voltage = 1.7857 * (POTValue / 1023) + 0.7143 Volts

DAC VL voltage = 1.7857 * (POTValue / 1023) + 0.7143 Volts
GSKIM voltage = 2.0833 * (POTValue / 1023) + 0.4167 Volts
DETBIAS voltage = 6 * (POTValue / 1023) + 6.053 Volts

Programming Notes:
Generally only the DETBIAS is set by the user, the other 3 biases are set automatically
by the calibration routines.

ReadBackPotValues

Description:
Reads back the 4 current POT values from the PIC, useful for reading back new POT

values after and on plane correction.

Calling format:

VB .NET call:
{return value} = BoardComs.ReadBackPotValues (BoardNumber, DACVH_val,
DACVL_val, GSKIM_val, DETBIAS_val)

Visual C# call:
{return value} = BoardComs.ReadBackPotValues (BoardNumber, ref DACVH_val, ref
DACVL_val, ref GSKIM_val, ref DETBIAS val);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

DACVH_val = Returned value of the DAC_VH pot setting. This is a 10 bit value with a
range of 0 to 1023. Data type is integer

DACVL_val = Returned value of the DAC_VL pot setting. This is a 10 bit value with a
range of 0 to 1023. Data type is integer

GSKIM_val = Returned value of the GSKIM (global skim) pot setting. This is a 10 bit
value with a range of 0 to 1023. Data type is integer

DETBIAS val = Returned value of the DETBIAS_VH pot setting. This is a 10 bit value
with a range of 0 to 1023. Data type is integer

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Algorithmn:
DAC VH voltage = 1.7857 * (DACVH_val / 1023) + 0.7143 Volts

DAC VL voltage = 1.7857 * (DACVL_val / 1023) + 0.7143 Volts
GSKIM voltage = 2.0833 * (GSKIMVH_val / 1023) + 0.4167 Volts
DETBIAS voltage = 6 * (DETBIAS_val / 1023) + 6.053 Volts

Programming Notes:
Generally only the DETBIAS is set by the user, the other 3 biases are set automatically
by the calibration routines.

SetGlobalSkimVal

Description:
Sets the value of global skim to use during calibration when calibration is set to be

performed with a user set global skim value (calibrate option #2, see the calibrate
command).

Calling format:

VB .NET call:
{return value} = BoardComs.SetGlobalSkimVal(BoardNumber, GlobalSkimValue)

Visual C# call:
{return value} = BoardComs.SetGlobalSkimVal(BoardNumber, GlobalSkimValue);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

GlobalSkimValue = Digital word to set the 10 bit digital pot for a bias generator. The
valid range is 0 to 1023. Data type is integer

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Algorithmn:
GSKIM voltage = 2.0833 * (GlobalSkimValue / 1023) + 0.4167 Volts

Programming Notes:

Generally this function should not be needed as the best options to perform calibration
is to either use no global skim or let the calibration routine automatically find the best
global skim value

CalibrateArray

Description:
Calibrates the array by performing an on ROIC per pixel offset correction. Calibration

involves setting the three biases, DACVH, DACVL, GSKIM to appropriate values
and then determining the per pixel dac coefficients that will calibrate the array. The
calibration routine can be used to calibrate with, without, or with a preset value of
global skim.

Calling format:

VB .NET call:
{return value} = BoardComs.CalibrateArray(BoardNumber, GSkim_Option, CalTime)

Visual C# call:
{return value} = BoardComs.CalibrateArray(BoardNumber, GSkim_Option, ref CalTime);

Parameters:
BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.
GSkim_Option = Flag that determines what will be done with global skim during
calibration. Data Type is integer.
GSkim_Option:
0 = No GSKIM, the gskim pot is setto 0
1 = GSKIM determined automatically
2 = Calibrate using value set by the SetGlobalSkimVal command
CalTime = Returned number of elapsed seconds. Data type is double
{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:
Array should be looking at a uniform “reference” such as a blackbody or some other
uniform surface like a shutter blade in order to give the best offset correction results

MarkBadPixels

Description:
Sends the bad pixel map to the PIC processor on the array board. Upto 16 pixels can

be marked bad.

Calling format:

VB .NET call:
{return value} = BoardComs.MarkBadPixels (BoardNumber, NumbBadPixels,
ReadoutDir, BadPixelArray)

Visual C# call:
{return value} = BoardComs.MarkBadPixels (BoardNumber, NumbBadPixels,
ReadoutDir, ref BadPixelArray);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

NumbBadPixels = The number of bad pixels. Allowed values are 0 to 16. Data type is
integer.

ReadoutDir = The readout direction of the array that matches the bad pixel array data.
0 = Left to Right, 1 = Right to Left. Data type is integer

BadPixelArray = 16 element array containing the pixel number for each bad pixel. Pixel
numbers are from 0 to 255 for the 256 pixel array. Data type is integer

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:
1) MarkBadPixels simply sets the bad pixel array into the PIC controller. Bad pixels
shown or replaced is controlled by a separate function, HideBadPixels.
2) The directional descriptors, Left and Right, are based on viewing the ROIC die
with the detector bond pads at the top and the control bond pads at the bottom.

HideBadPixels

Description:
Sets a flag to hide or show the bad pixels in the output data.

Calling format:

VB .NET call:
{return value} = BoardComs.HideBadPixels (BoardNumber, HideFlag)

Visual C# call:
{return value} = BoardComs.HideBadPixels (BoardNumber, HideFlag);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

HideFlag = a 1 = hides bad pixels, a 0 = show bad pixels. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

ReadbackBadPixels

Description:
Reads back the bad pixels from the PIC’s runtime memory.

Calling format:

VB .NET call:
{return value} = BoardComs.ReadbackBadPixels (BoardNumber, NumbBadPixels,
ReadoutDir, BadPixelArray)

Visual C# call:
{return value} = BoardComs.ReadbackBadPixels (BoardNumber, ref NumbBadPixels,
ref ReadoutDir, ref BadPixelArray);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

NumbBadPixels = Returns the number of bad pixels. Allowed values are 0 to 16. Data
type is integer.

ReadoutDir = The readout direction of the array that matches the bad pixel array data.
0 = Left to Right, 1 = Right to Left. Data type is integer

BadPixelArray = 16 element array containing the pixel number for each bad pixel. Pixel
numbers are from 0 to 255. Data type is integer

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:
1) The directional descriptors, Left and Right, are based on viewing the ROIC die
with the detector bond pads at the top and the control bond pads at the bottom.

UpdateDACCoeff

Description:
Copies the current run time DAC coefficients from the PIC memory to the ROIC.

Calling format:

VB .NET call:
{return value} = BoardComs.UpdateDACCoeff (BoardNumber)

Visual C# call:
{return value} = BoardComs.UpdateDACCoeff (BoardNumber);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

This function is generally called after the WriteDACCoeff function which loads
coefficients from the computer to the PIC processor on the array board. Useful when it
is desired to send a known set of coefficients to the ROIC.

ZeroDACCoeff

Description:
Zeros the ROIC DAC coefficients in the ROIC and the PIC runtime memory coefficients.

Calling format:

VB .NET call:
{return value} = BoardComs.ZeroDACCoeff (BoardNumber)

Visual C# call:
{return value} = BoardComs.ZeroDACCoeff (BoardNumber);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:
This function clears the offset correction coefficients in both the PIC runtime memory
and the ROIC at the same time, the UpdateDACCoeff command is not needed.

ReadBackDACCoeff

Description:
Reads back the PIC runtime memory DAC coefficients to the PC.

Calling format:

VB .NET call:
{return value} = BoardComs.ReadBackDACCoeff (BoardNumber, DACCoeff)

Visual C# call:
{return value} = BoardComs.ReadBackDACCoeff (BoardNumber, ref DACCoeff);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

DACCoeff = Array of DAC coefficients. Data type is byte. This should be a 256
element array, with each element representing a single pixel's coefficient. Pixel
coefficients can take any value from 0 to 255.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:
This function reads back the offset correction coefficients from the array board PIC
processor to the PC if it is desired to display or store the coefficient data on the PC.

WriteDACCoeff

Description:
Writes the ROIC offset correction DAC coefficients from the PC into the PIC runtime

memory. Coefficients are sent to the ROIC with the UpdateDACCoeff command.

Calling format:

VB .NET call:
{return value} = BoardComs.WriteDACCoeff (BoardNumber, DACCoeff)

Visual C# call:
{return value} = BoardComs.WriteDACCoeff (BoardNumber, ref DACCoeff);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

DACCoeff = Array of DAC coefficients. Data type is byte. This should be a 256
element array, with each element representing a single pixel's coefficient. Pixel
coefficients can take any value from 0 to 255.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

This function only writes the coefficients from the PC to the array board PIC processor.
To update the coefficients into the ROIC use the UpdateDACCoeff after this command
is run. The WriteDACCoeff function is used to restore a previously stored set of
coefficients from the PC to the PIC-ROIC.

Set_ROIC_Readout_Window

Description:
Sets the ROIC readout window size and readout direction.

Calling format:

VB .NET call:
{return value} = BoardComs.Set_ROIC_Readout_Window (BoardNumber, LeftAdr,
RightAdr, ReadoutDir)

Visual C# call:
{return value} = BoardComs.Set_ROIC_Readout_Window (BoardNumber, LeftAdr,
RightAdr, ReadoutDir);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

LeftAdr = Left window address, this is the number of channels to leave off from the left
side of the array during readout. Data type is integer. Allowed values are 0 to 127.
To readout all pixels the value of LeftAdr must be zero.

RightAdr = Right window address, this is the number of channels to leave off from the
right side of the array during readout. Data type is integer. Allowed values are 0 to
127. To readout all pixels the value of RightAdr must be zero.

ReadoutDir = The readout direction of the array. 0 = Left to Right, 1 = Right to Left.
Data type is integer. The readout window is independent of direction - left side is
always the left side, and right side is always the right side — the ReadoutDir simply
swaps which side the readout starts on and the direction the readout proceeds in.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:
1) The directional descriptors, Left and Right, are based on viewing the ROIC die
with the detector bond pads at the top and the control bond pads at the bottom.

ReadBackSettings

Description:
Reads back the current array settings from the PIC runtime memory to the PC.

Calling format:

VB .NET call:
{return value} = BoardComs.ReadBackSettings (BoardNumber, SettingsArray)

Visual C# call:
{return value} = BoardComs.ReadBackSettings (BoardNumber, ref SettingsArray);

Parameters:
BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

SettingsArray = One dimensional settings array. The minimum size is 22 elements, the
data type is integer. The array element meanings are:

SettingsArray(0) = Left readout window address, LeftAdr
SettingsArray(1) = Right readout window address, RightAdr
SettingsArray(2) = Readout direction, ReadoutDir
SettingsArray(3) = Charge well size, WellDepth
SettingsArray(4) = Integration time, IntegrationTime
SettingsArray(5) = DAC VH value, DACVH_val
SettingsArray(6) = DAC VL value, DACVL _val
SettingsArray(7) = Global Skim value, GSKIM_val
SettingsArray(8) = Detector bias value, DETBIAS val
SettingsArray(9) = Trigger polarity, TriggerPolarity
SettingsArray(10) = Trigger edge mode, TriggerEdgeMode
SettingsArray(11) = Trigger delay count, TrigDelayValue
SettingsArray(12) = Trigger delay mode, TrigDelayMode
SettingsArray(13) = Hide bad pixels flag, HideFlag
SettingsArray(14) = # of bad pixels, NumbBadPixels
SettingsArray(15) = AtoD conversion factor
SettingsArray(16) = GSkim value used for calibration*
SettingsArray(17) = DACVH value used for calibration*
SettingsArray(18) = DACVL value used for calibration*
SettingsArray(19) = Auto GSkim flag for calibration*
SettingsArray(20) = Auto DACVH flag for calibration*
SettingsArray(21) = Auto DACVL flag for calibration*

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:
1) The last 6 entries in the settings array are marked with an asterisks, *. These
entries are for internal routine use and are not useful or needed by a top level
application

RestoreFromEEPROM

Description:
Restores all the array settings from EEPROM memory on the array board to PIC

runtime memory.

Calling format:

VB .NET call:
{return value} = BoardComs.RestoreFromEEPROM (BoardNumber)

Visual C# call:
{return value} = BoardComs.RestoreFromEEPROM (BoardNumber);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:
1) This command would need to be followed by a ReadBackSettings and
ReadbackBadPixels in order for the PC to know the new settings restored from
EEPROM.

StoreTOEEPROM

Description:
Stores the current PIC runtime settings to the EEPROM on the array board.

Calling format:

VB .NET call:
{return value} = BoardComs.StoreTOEEPROM (BoardNumber)

Visual C# call:
{return value} = BoardComs.StoreTOEEPROM (BoardNumber);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

ReadBoardInfo

Description:
Reads identification and interface data from the selected board.

Calling format:

VB .NET call:

{return value} = BoardComs.ReadBoardInfo (BoardNumber, VID, PID,
DeviceDescription, Manufacturer, BoardSerial, FirmwareChecksum, BoardRev,
TECInstalled)

Visual C# call:

{return value} = BoardComs.ReadBoardInfo (BoardNumber, ref VID, ref PID, ref
DeviceDescription, ref Manufacturer, ref BoardSerial, ref FirmwareChecksum, ref
BoardRev, ref TECInstalled);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

VID = the USB vendor ID in hex format. Data type is string.

PID = the USB product ID in hex format. Data type is string.

DeviceDescription = USB device description string. Data type is string.

Manufacturer = USB manufacturer description string. Data type is string.

BoardSerial = the array board serial number. Data type is integer.

FirmwareChecksum = the checksum of the installed firmware. Data type is integer

BoardRev = the array PC board revision number. Data type is integer

TECInstalled = TE controller installed flag. 1 = TE controller installed, 0 = TE controller
not installed. Data type is integer. Allowed values are 0 and 1.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

EEPROM_UserData_Write

Description:
Allows the user to save arbitrary information to unused EEPROM area on the array

board. A total of 2048 bytes of data may be written

Calling format:

VB .NET call:
{return value} = BoardComs.EEPROM_UserData_Write (BoardNumber, StartAddress,
NumBytes, ByteArray)

Visual C# call:
{return value} = BoardComs.EEPROM_UserData_Write (BoardNumber, StartAddress,
NumBytes, ref ByteArray);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

StartAddress = The starting address of the EEPROM to write to. Allowed range is 0 to
2047. Data type is integer

NumBytes = Number of bytes of data to be written to EEPROM. Allowed range is 1 to
2048. Data type is integer

ByteArray = data to be written. Each element of the 1D ByteArray must be a value
between 0 to 255 (inclusive). Data type is byte.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

1) StartAddress + NumBytes can not be > 2048. Any data that StartAddress +
NumBytes that is beyond 2048 is ignored and not written to the EEPROM

2) The size of ByteArray must at least be the same size as the NumBytes to be
written or larger.

3) EEPROM writes take many milliseconds per block. This command can take a
while to complete. It is important to wait for the command to return before
sending more commands to the array board

EEPROM_UserData_Read

Description:
Reads user data from unused block of EEPROM memory on the array board. A total of

2048 bytes are available to read.

Calling format:

VB .NET call:
{return value} = BoardComs.EEPROM_UserData_Read (BoardNumber, StartAddress,
NumBytes, ByteArray)

Visual C# call:
{return value} = BoardComs.EEPROM_UserData_Read (BoardNumber, StartAddress,
NumBytes, ref ByteArray);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

StartAddress = The starting address of the EEPROM to read from. Allowed range is 0
to 2047. Data type is integer

NumBytes = Number of bytes of data to read from EEPROM. Allowed range is 1 to
2048. Data type is integer

ByteArray = 1D array to store the read EEPROM data. Each element of the 1D
ByteArray will be a value between 0 to 255 (inclusive). Data type is byte.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:
1) StartAddress + NumBytes can not be > 2048. Any data that StartAddress +
NumBytes that is beyond 2048 is ignored and not read from the EEPROM
2) The size of ByteArray must at least be the same size as the NumBytes to be
read or larger.

TECooler_Power

Description:
Turns the TE Cooler power on or off

Calling format:

VB .NET call:
{return value} = BoardComs.TECooler_Power (BoardNumber, TEPowerState)

Visual C# call:
{return value} = BoardComs.TECooler_Power (BoardNumber, TEPowerState);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

TEPowerState = a 1 turns on the cooler, a O turns it off. Allowed values are 0 and 1,
data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

TECooler_ReadA2D_Data

Description:
Reads back operational performance values from the TEC

Calling format:

VB .NET call:
{return value} = BoardComs.TECooler ReadA2D_Data (BoardNumber, Data2Read,
NumAvgs, ReadBackData)

Visual C# call:
{return value} = BoardComs.TECooler ReadA2D_Data (BoardNumber, Data2Read,
NumAvgs, ref ReadBackData);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

Data2Read = Selection index to pick which piece of data to read back from TEC.
Allowed values are 0 to 4 (inclusive). Data type is integer.

0 = ITEC - a voltage related to the current in the TE element

1 = TMON - a voltage that provides temperature stability information
2 = notapplicable

3 = VTEC - a voltage related to the voltage across the TE element
4 = VREF - the internal reference voltage for the TE controller

NumAvgs = The number of readings to average together before reporting a value.
Allowed values are 0 to 15. Note a value of O or 1 is equivalent to no averaging.
Data type is integer.

ReadBackData = The read back data. This data is based upon a 12bit A/D. Data type
is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Algorithmn:
VREF_Meas = VREF * 5/ 4095 (this voltage is used for the other computations)

ITEC_Meas = { (ITEC *5/4095) — VREF_Meas /2 }* 4 (in Amps)
VTEC_Meas = { (VTEC *5/4095) — VREF_Meas /2 }*4.5 (in Volts)
TMON_Meas ={ (TMON *5/4095) - VREF_Meas /2 }* 1000/ 1.57 (in mK from set
point)
Notes:
1) Positive values of VTEC_Meas mean the TE is cooling
2) TMON_Meas is a delta measurement, providing the delta temperature from the
set point temperature. TMON_Meas originates from the amplified/buffered
output of the difference amplifier that is reading the thermistor bridge circuit.

TECooler_Set TEC_Setpoint

Description:
Sets the TEC setpoint temperature; which is the temperature the cooler will attempt to

reach and maintain.

Calling format:

VB .NET call:
{return value} = BoardComs.TECooler_Set_TEC_Setpoint (BoardNumber,
TECSetpoint)

Visual C# call:
{return value} = BoardComs.TECooler_Set_TEC_Setpoint (BoardNumber,
TECSetpoint);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

TECSetpoint = Value of the setpoint POT value, 0 to 255 (inclusive). (see TEC Setpoint
Computation for conversion to Kelvin or Celsius). Data type is integer

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

TEC Setpoint Computation

Computing the temperature from the setpoint integer requires detailed knowledge of the
particular thermistor, and the circuit component values used to measure the
temperature for the controller loop.

Compute Temperature from Setpoint:
The setpoint temperature is controlled by an 8 bit digital pot in one leg of a bridge
circuit. Buried in the equations provided are the circuit topology and values, if
any of these are changed, either by the user, or by the manufacturer, then a
modified set of equation coefficients will be needed. The equations provided
below are based on the construction details as of July 2016.

Variables / Coefficients:

1) TECSetpoint = 8 bit digital word loaded to digital pot, values range from O to
255 (inclusive)

2) TEPotRatio = TECSetpoint / 255, this is the ratio of the pot. This has values
of 0 to 1 as is a Double data type.

3) Thermistor Coefficient A = 0.0033538646, Data type is Double

4) Thermistor Coefficient B = 0.0002565409, Data type is Double

5) Thermistor Coefficient C = 0.0000019243889, Data type is Double

6) Thermistor Coefficient D = 0.00000010969244, Data type is Double

7) dtmp = temporary variable, data type is Double

dtmp = LN {3 *[(5 * TEPotRatio + 2) / (7 — 5 * TEPotRatio)]}
Note: LN is natural logarithm
TempK=1/(A+ B *dtmp + C * dtmp”2 + D * dtmp”3); in Kelvin

TempC = TempK — 273.15; in Celsius

TECooler_Read TEC_Setpoint

Description:
Reads the current TEC setpoint temperature POT value (see TEC Setpoint

Computation for conversion to Kelvin or Celsius)

Calling format:

VB .NET call:
{return value} = BoardComs.TECooler_Read TEC_Setpoint (BoardNumber,
TECSetpoint)

Visual C# call:
{return value} = BoardComs.TECooler_Read_TEC_Setpoint (BoardNumber, ref
TECSetpoint);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

TECSetpoint = Value of the setpoint (see TEC Setpoint Computation for conversion to
Kelvin or Celsius). Data type is integer

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

TECooler_Store TEC_Setpoint

Description:
Stores the current TEC setpoint into the EEPROM memory of the TEC board’s PIC

processor

Calling format:

VB .NET call:
{return value} = BoardComs.TECooler_Store_TEC_Setpoint (BoardNumber)

Visual C# call:
{return value} = BoardComs.TECooler_Store_ TEC_Setpoint (BoardNumber);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

TECooler_Restore_TEC_Setpoint

Description:
Restores the TEC setpoint temperature from the non volatile memory in the TEC board

to the TEC board current operating TEC setpoint and then returns that information to
the PC.

Calling format:

VB .NET call:
{return value} = BoardComs.TECooler_Restore_ TEC_Setpoint (BoardNumber,
TECSetpoint)

Visual C# call:
{return value} = BoardComs.TECooler_Restore_ TEC_Setpoint (BoardNumber, ref
TECSetpoint);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

TECSetpoint = Value of the setpoint (see TEC Setpoint Computation for conversion to
Kelvin or Celsius). Data type is integer

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

TECooler_Read TEC_Status

Description:
Reads the current TEC board status

Calling format:

VB .NET call:
{return value} = BoardComs.TECooler_Read TEC_Status (BoardNumber,
TEC_PowerState, TEC_CoolingState, TEC_StabilityState)

Visual C# call:
{return value} = BoardComs.TECooler_Read_TEC_Status (BoardNumber, ref
TEC_PowerState, ref TEC_CoolingState, ref TEC_StabilityState);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

TEC_PowerState = Flag for the current state of the TEC power. 1 = Coolerison, 0 =
Cooler is off. Data type is integer. The TEC controller board is always powered, the
power state referred to here is the power state of the output drivers to the actual
TEC element. When the power state is off the H bridge driving the TE element is off
and the TEC element is not being driven.

TEC_CoolingState = Flag that indicates the direction that the TEC element is being
driven (cooling or heating). TEC_CoolingState => 1 = cooling, 0 = heating. Data
type is integer.

TEC_StabilityState = Flag that indicates the stability of the TE element temperature.
TEC_StabilityState => 1 = stable, 0 = not stable. Stability is determined within the
TEC board’s processor by monitoring the TEMPGOOD line from the TE controller
chip, when the TEMPGOOD has been indicated for 5 to 6 seconds the stability state
is set to stable. The stability state is monitored internally by the controller’s
processor to detect thermal runaway and to shut the cooler down automatically in
case that occurs. So periodically calling this function will let you know if the cooler
output control is still active

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

TECooler_Query

Description:
Queries the TEC board’s processor to see if it is there, and that comms are working.

This is a left over from the board development process.

Calling format:

VB .NET call:
{return value} = BoardComs.TECooler_Query (BoardNumber)

Visual C# call:
{return value} = BoardComs.TECooler_Query (BoardNumber);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

SetOutputTriggerLevel

Description:
This command sets the digital state of the output trigger. The output trigger consists of

a single open drain driver (NC7SZ05) which can operate from 1.65 to 5.5V of supply.
This makes it compatible with 1.8V, 3.3V, and 5V logic. The user supplies the
voltage to the driver, and also the pull up resistor for the open drain output. The
drivers output can be set high or low with the SetOutputTriggerLevel command if the
SyncTrig2Int option is set to 0. When the SyncTrig2Int option is set to 1, the output
trigger level parameter is ignored and the output trigger signal from the array board
replicates the ROIC integration control pulse.

Calling format:

VB .NET call:
{return value} = BoardComs.SetOutputTriggerLevel (BoardNumber, OTrigLevel,
SyncTrig2int)

Visual C# call:
{return value} = BoardComs.SetOutputTriggerLevel (BoardNumber, OTrigLevel,
SyncTrig2int);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

OTrigLevel = the output digital trigger level state. Allowed values are 1 (for a logic high)
and O for a logic low. Data type is integer.

SyncTrig2Int = output trigger mode selection option. 0 = output trigger level is set to the
level specified by the OTrigLevel input parameter. 1 = the output trigger replicates
the ROIC integration pulse. Allowed values are 1 and 0. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

If SyncTrig2int is set to “1” to have the output trigger signal replicate the ROIC
integration pulse then you do not need to keep calling the SetOutputTriggerLevel
function, it will stay in the mode to have the output trigger replicate the ROIC integration
pulse until SyncTrig2Int is set to O or the board is power cycled.

SetFastReadoutFlag

Description:
This command sets a flag that puts the PIC processor into fast readout mode, turning

off the A/D conversion and running the ROIC at it's maximum readout rate of 4AMHz.
The feature is implemented for a particular customer that wished higher speed and
was able to do their own external digitization of the analog pixel stream, taking the
analog pixel stream signal directly off the array board.

Calling format:

VB .NET call:
{return value} = BoardComs.SetFastReadoutFlag (BoardNumber, FastReadFlag)

Visual C# call:
{return value} = BoardComs.SetFastReadoutFlag (BoardNumber, FastReadFlag);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

FastReadFlag = Flag that sets fast readout mode, 1 = turn fast readout mode on, 0 =
turn fast readout mode off. Allowed values are 0 and 1, data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

This function only needs to be used if bypassing all digitization and pixel data read back
from the array board. When fast read out mode is enabled, no pixel data is transmitted
back from the USB interface and all GetDataxxxx commands should not be used.

SetConversionRef

Description:
This command has been obsoleted and should not be used.

SetErrorDialogState

Description:
This command operates entirely within the DLL and does not do anything to the

operation of the array as it does not send/receive any communications to the array
board. The SetErrorDialogState command sets or clears a flag that allows internal
communications errors to be presented on the screen via a pop-up message box.
The default state within the DLL is to display communications errors when they
occur with a pop-up msg box. This function allows the user to suppress the pop-up
message box when communication errors occur. Generally showing the error
message boxes should be left on. A well written top level application will not cause
communication errors to occur under normal operating conditions.

Calling format:

VB .NET call:
{return value} = BoardComs.SetErrorDialogState (ErrorEnable)

Visual C# call:
{return value} = BoardComs.SetErrorDialogState (ErrorEnable);

Parameters:

ErrorEnable = When a 1 the errors are shown, when 0 the errors are suppressed.
Allowed values are 0 and 1. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

Flush_USB_ReadBuffer

Description:
Discards any data that is cached in the USB read buffer

Calling format:

VB .NET call:
{return value} = Flush_USB_ReadBuffer (BoardNumber)

Visual C# call:
{return value} = Flush_USB_ReadBuffer (BoardNumber);

Parameters:

BoardNumber = the board number as found during the Connect_Boards command.
Allowable values are 0 to 7. Data type is integer.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise a 0 will be returned,
indicating a failure. Data type is integer

Programming Notes:

TECooler_Read_Errorcode

Description:
This command is obsolete and no longer supported.

WriteBoardInfo

Description:
This command is for internal use by A/DIC only.

